www.pedneuro.in

In summary, the literature indicates that the following approximate diagnostic yields are expected in the genetic evaluation of ASDs:

- CMA (10%)
- Fragile X (1–5%)
- *MECP2* (4% of females)
- *PTEN* (5% of those with head circumferences >2.5 SDs that are tested)
- Karyotype (3%)
- Other (10%). Currently, there are no published studies that collate the yield on the other identifiable etiologies of autism. As noted above, identifiable brain anomalies, genetic syndromes, metabolic disorders, and other diagnosable conditions will be identified in the genetic evaluation of persons with ASDs. Using empiric estimates and clinical experience, this has been estimated as 10%.⁷⁴

Therefore, using current knowledge and technology, a thorough clinical genetics evaluation of patients with ASDs is estimated to result in an identified etiology in 30–40% of individuals.

www.pedneuro.in

Table 2 Recently described metabolic conditions associated with an ASD phenotype

3β-Hydroxycholesterol-7-reductase deficiency (Smith–Lemli–Opitz syndrome)

6-N-trimethyllysine dioxygenase deficiency

Adenylosuccinate lyase deficiency

Cerebral folate deficiency

Cytosolic 5' nucleotidase superactivity

Dihydropyrimidinase deficiency

Disorders of creatine transport or metabolism

Disorders of γ-aminobutyric acid metabolism

Phosphoribosylpyrophosphate synthetase superactivity

Succinic semialdehyde dehydrogenase deficiency

Sulfation defects

ASD, autism spectrum disorder.

THIS IS ONE OF COMMON REASONS WHY ALL AUTISM DIAGNOSED BY PSYCHOLOGISTS OR THERAPISTS ARE NOT ALWAYS AUTISM.

ALSO THE REASON WHY SOME AUTISMS DONOT IMPROVE DESPITE THERAPY, AND MAY NEED MEDICINES OF TREATMENT AS PER RESPECTIVE ISSUES IN NEUROLOGICAL OR GENETIC PROBLEM.

THIS IS BASED ON ACMG GUIDELINES

www.pedneuro.in

Table 5 Selected genetic syndromes that are known etiologies of autism spectrum disorders

22q11.2 deletions including velocardiofacial (Shprintzen) syndrome

Angelman syndrome

CHARGE syndrome

de Lange syndrome

Fragile X syndrome

MED12 disorders (including Lujan–Fryns syndrome)

Prader-Willi syndrome

PTEN-associated disorders (Cowden syndrome, Bannayan–Riley–Ruvalcaba syndrome)

Rett syndrome

Smith-Lemli-Opitz syndrome

Smith-Magenis syndrome

Sotos syndrome

Tuberous sclerosis

PTEN, phosphatase and tensin homolog.

Adapted from ref. 74.

www.pedneuro.in

Table 3 Clinical symptoms that prompt metabolic or mitochondrial testing in persons with ASDs

Acid/base or electrolyte disturbances

Anemia with an elevated mean corpuscular volume

Cyclic vomiting

Dermatologic changes: alopecia, hypertrichosis, and pigmented skin eruptions

Developmental regression associated with illness or fever

Gastrointestinal dysfunction, gastroparesis

Hypotonia/dystonia

Lactic acidosis

Lethargy

Multisystem involvement, especially cardiac, hepatic, or renal (physical and/or laboratory evidence)

Neurodegeneration outside of the typical ASD speech loss at 18–24 months

Poor growth, microcephaly

Seizures

ASD, autism spectrum disorder.

www.pedneuro.in

Region	Linkage	Cytogenetics	Microarray	Genomic coordinates	Deletion/ duplication	Candidate genes in the region
1p			1p36.13	1:762,978–17,148,920	dup	
1q			1q21.1	1:145.0-146.4 Mb	dup	HYDIN
	1q41-42		1q41	1:214,500,000-236,600,000	del	MARK1
2p		2p16	2p16.3	2:50,145,642-51,259,673	del	NRXN1
2q	2q		2q31.1	2:93,300,000-243,199,373	del, dup	SLC25A12
		2q37	2q37	2:231,972,946-231,989,823	del	5-HTR2B
3q			3q24	3:142,984,063-143,567,372	del, dup	SLC9A9
	3q25-27			3:148,900,000-187,900,000		
5p			5p15.1	5: 9,623,122-9,624,122	del	
7q			7q11.23	7:72,200,000 (1.5 Mb)	dup	
	7q 22–31	7q	7q22.1	7:98,000,000-107,400,000	del	RELN
			7q31.2	7:116,312,458–116,438,439	del, dup	FOXP2, WNT2, MET
			7q35–q36	7:145,813,452–148,118,089	del	EN2, CNTNAP2
11q			11q13.3-q13.4	11:70,313,960-70,935,807	del	SHANK2
12q	12q14.2			12:63,100,000-65,100,000		
13q	13q		13q14.2-q14.1	13:47,300,000-47,300,000	del	5-HTR2A
15q 11–13	15q 11–13	15q11-13	15q11–13	15: 20.7–26.7 (Mb)	dup	UBE3A, SNRPN, CHRNA7
			15q13.3	15: 28,736,917–30,686,830	del	CHRNA7
16p	16p		16p11.2	16:29.5-30.1 (Mb)	del, dup	
			16p13.11	16:15.5-16.5 (Mb)	del, dup	
17p			17p11.2	17:20,156,497–22,975,771	del, dup	
17q	17q11-12		17q11.2	17:24,000,000-31,800,000	del	SLC6A4
			17q21.3	17:38,100,000–50,200,000	del, dup	ITGB3
18q	18q21-23	18q	18q21.1	18:47,793,251-47,808,143	del	TCF4, MBD1
21p	21p13-q11			21:0-16,400,000		
22q		22q11-13	22q11.2	22:19,744,225 (1.5-3.0 Mb)	del	CRKL, FGF8, TBX1
			22q13.3	22:51,113,069–51,171,639	del	SHANK3
Хр	Xp22	Хр	Xp22.31	X:6,463,313-8,091,810	del, dup	NLGN4
Xq	Xq13		Xq13.1	X:70,364,680-70,391,050	del, dup	NLGN3
			Xq28	X:153,287,263-153,363,187	del	MECP2

www.pedneuro.in

Not all autism are genetic as the genetic database is not yet completely studied and also issues caused by some insult or damage to brain in minor way can also cause autism like developmental disorders.